Product Code Database
Example Keywords: energy -mobile $20-178
barcode-scavenger
   » Wiki: Convex Geometry
Tag Wiki 'Convex Geometry'.
Tag

In , convex geometry is the branch of studying , mainly in . Convex sets occur naturally in many areas: computational geometry, , discrete geometry, functional analysis, geometry of numbers, integral geometry, linear programming, probability theory, , etc.


Classification
According to the Mathematics Subject Classification MSC2010, Website of Mathematics Subject Classification MSC2010 the mathematical discipline Convex and Discrete Geometry includes three major branches: Mathematics Subject Classification MSC2010, entry 52 "Convex and discrete geometry"
  • general convexity
  • polytopes and polyhedra
  • discrete geometry
(though only portions of the latter two are included in convex geometry).

General convexity is further subdivided as follows: Mathematics Subject Classification MSC2010, entry 52A "General convexity"

  • axiomatic and generalized convexity
  • convex sets without dimension restrictions
  • convex sets in topological vector spaces
  • convex sets in 2 dimensions (including convex curves)
  • convex sets in 3 dimensions (including convex surfaces)
  • convex sets in n dimensions (including convex hypersurfaces)
  • finite-dimensional Banach spaces
  • random convex sets and integral geometry
  • asymptotic theory of convex bodies
  • approximation by convex sets
  • variants of convex sets (star-shaped, ( m, n)-convex, etc.)
  • Helly-type theorems and geometric transversal theory
  • other problems of combinatorial convexity
  • length, area, volume
  • and related topics
  • valuations on convex bodies
  • inequalities and extremum problems
  • convex functions and convex programs
  • spherical and hyperbolic convexity


Historical note
Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of and , it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of and Hermann Minkowski in dimensions two and three. A big part of their results was soon generalized to spaces of higher dimensions, and in 1934 and gave a comprehensive survey of convex geometry in Rn. Further development of convex geometry in the 20th century and its relations to numerous mathematical disciplines are summarized in the Handbook of convex geometry edited by P. M. Gruber and J. M. Wills.


See also
  • List of convexity topics


Notes

Expository articles on convex geometry

Books on convex geometry
  • (2025). 9783031505065, Springer International Publishing. .


Articles on history of convex geometry

External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs